Optimising the Quality of NSW Central Coast Green Tea

By

James Krahe, B Hum Nut (Hons)

A thesis submitted for the degree of Doctor of Philosophy, Food Science

School of Environmental and Life Sciences Faculty of Science and Information Technology University of Newcastle New South Wales Australia September 2012

Statement of Originality

This thesis contains no material previously accepted for the award of any other degree or diploma in any university or tertiary institution. Furthermore, to the best of my knowledge and belief, this thesis contains no material previously published or written by another person, except where due reference has been made in the text.

However, I acknowledge that the work embodied in this thesis has been done in collaboration with other researchers and has been carried out in part at other institutions. Where necessary, I have indicated within the thesis the extent and type of collaboration, and acknowledged the contributing parties.

I give consent for this copy of my thesis to be deposited in the University Library and to be made available for loan and photocopying subject to the provisions of the Copyright Act 1968.

James C Krahe

Acknowledgments

Scholarship

- Rural Industries Research and Development Corporation

Supervision

- Dr Paul Roach, School of Environmental and Life Sciences, University of Newcastle, Ourimbah Campus, Ourimbah, NSW
- Dr John Golding, Gosford Primary Industries Institute, Industry and Investment NSW, Ourimbah, NSW

Collaborating Partners

- University of Newcastle
- Industry and Investment NSW
- Kunitaro Coffee and Tea Company, Japan

Special Thanks to

- Dr. Nenad Naumovski: School of Environmental and the Life Sciences, University of Newcastle, Ourimbah Campus, who provided analysis of 2004 green tea samples from the Somersby and Narara Agricultural Research Sites of the Gosford Primary Industries Institute.
- Dr. Sophie Parks: Gosford Primary Industries Institute, Industry and Investment NSW who provided raw data for Near Infrared analysis comparisons.
- Dr. Jonathan Lidbetter: Gosford Primary Industries Institute, Industry and Investment NSW, who provided input for and organised the study with a whole plant, which was dug up at the Narara research site.
- NSW Industry and Investment, Gosford Primary Industries Institute staff responsible for the daily maintenance of the green tea plants used in the study from the Narara and Somersby Agricultural sites.
- Kunitaro Coffee and Tea Company staff, who were responsible for the harvesting and processing of the major (commercial) crops at the Somersby Agricultural site during 2004–09, and for providing the quality analysis results, obtained using the NIR absorption spectroscopy technique.
- Commonwealth of Australia Bureau of Meteorology, who provided weather data for solar intensity, rainfall and temperature for the 2007–2009 period.

Contents

Statement of Originality	i
Acknowledgmentsi	i
Contentsii	i
List of Figuresv	i
List of Tables	K
List of Abbreviationsxi	i
Synopsisxii	i
Chapter 1: Project Rationale 1 1.1 Green Tea Markets and Future 1 1.2 Research Aims 2 1.3 Thesis Organisation 2	1 1 2 2
Chapter 2: Introduction	7
2.1 Tea History. 2.2 Camellia sinensis var. sinensis (L) O. Kuntze 2.3 2.3 Japanese Green Tea Distinctiveness 11 2.4 Japanese Green Tea Processing 12 2.5 Japanese Green Tea Drying and Rolling. 12 2.6 Final Drying and Rolling of Japanese Green Tea 13 2.7 Japan's Green Tea Products 14 2.8 Seasonal Growth and Green Tea Production in Japan 17 2.9 Shading for Gyokuro Production in Japan 17 2.10 World Production of Camellia sinensis var. sinensis 26 2.11 Climatic Conditions for Production of Camellia sinensis var. sinensis 27 2.12 Green Tea Agriculture on the Central Coast of New South Wales 25 2.13 Access of Australian Green Tea 27 2.15 The Flavour of Japanese Green Tea 27 2.16 Difficulties with Detecting the Umami Taste 28 2.17 Magaurement of Green Tea's Pionetive Constituents 26	/ ? 2 3 3 4 7 ?) 1 5 5 7 7 8 0
2.17 Measurement of Green Tea's Bioactive Constituents) 1
2.19 Caffeine Content of Green Tea 32 2.20 Catechin Content of Green Teas 35 2.21 The Role of Catechins within the Chloroplast 39 2.22 Conclusion 40	5 3 3 0
Chapter 3: General Methods	1
3.1 Introduction 41 3.2 Study Locations 42 3.3 Narara Site 42 3.4 Somersby Site 44 3.5 Studies Using Treatment and Control Plants 45 3 6 Time Effect Studies 47	123457

3.7 Large Scale Harvesting by Kunitaro	47
3.8 Small Scale Hand Harvesting	47
3.9 Measurement of Relative Chlorophyll Content (Minolta SPAD)	48
3.10 Large Scale Processing by Kunitaro	49
3.11 Small Scale Sample Processing (Fresh–Frozen Processing)	49
3.12 Microwave Oven Drying Method	50
3.13 Sample Homogenisation Method	50
3.14 Preparation of Green Tea Samples for HPLC Analysis	50
3.15 High-Performance Liquid Chromatographic Analysis	51
3.16 Concentration Calculations	54
3.17 Quality Control of HPLC System	54
3.18 Quality Score Calculations	55
3.19 Specific Agricultural Treatments	55
3.20 Conclusion	56
Chapter 4: Identification and Analysis of Constituents within Green Tea	
Infusions of Camellia sinensis var. sinensis	57
4.1 Introduction	57
4.2 Methods	59
4.3 Results	64
4.4 Discussion	77
4.5 Conclusion	84
Chapter 5: Objective Measurement of Green Tee Quality	85
5.1 Introduction	03 85
5.2 Methods	85 86
5.3 Results	91
5.4 Discussion	99
5.5 Conclusion	105
Chanten & NEW Control Coost Crean Top Quality	107
6 1 Introduction	107
6.2 Methoda	/ 10 100
6.2 Posulta	109
6.4 Discussion	, 114 127
6.5 Conclusion	,127 133
	133
Chapter 7: Changes in Quality Effecting Constituents throughout the	
Active Growth Period of Camellia sinensis var. sinensis	136
7.1 Introduction	136
7.2 Method	139
7.3 Results	142
7.4 Discussion	169
7.5 Conclusion	175
Chapter 8: Effect of Shading on the Manufacture of Green Tea	177
8.1 Introduction	177
8.2 Methods	181
8.3 Results	187
8.4 Discussion	214
8.5 Conclusion	221
Chapter 9: Effect of Post-Harvest Processing Delays during the Manufacture	<u>,</u>
of Green Tea	224

9.1 Introduction	
9.2 Methods	
9.3 Results	
9.4 Discussion	
9.5 Conclusions	
Chapter 10: General Discussion and Conclusions	
10.1 Overview of the Usefulness of the HPLC Method	
10.2 The Measurement of the Constituents	
10.3 The Creation of the Quality Indices	
10.4 Identification of Strengths and Weaknesses	
10.5 Creating High Quality Teas	
10.6 The Effect of Shading	
10.7 Effect of Post-Harvest Delays	
10.8 Future Directions	
10.9 Conclusions	
References	

List of Figures

Figure 1.1. Summary of thesis chapters and primary aims	6
Figure 2.1. Relative commercial value of Japanese green tea products, based upon	
harvest timing	.17
Figure 2.2. Chemical structure of the most abundant free amino acid in green tea,	
theanine (Adapted from L-theanine, Sigma-Aldrich 2010)	.33
Figure 2.3. Chemical structure of caffeine found in green tea (Adapted from	~ (
caffeine, Sigma-Aldrich 2010)	.34
Figure 2.4. Chemical structure of epicatechin. A naturally occurring catechin found	26
In green tea (Adapted from EC, Sigma-Aldrich 2010)	.36
Figure 2.5. Chemical structure of epigallocatechin. A naturally occurring catechin found in group too (Adopted from ECC, Sigma Aldrich 2010)	26
Figure 2.6 Chamical structure of anigallocatachin callete. The most shundant	. 30
rigure 2.0. Chemical structure of epiganocalectini ganate. The most abundant	
Sigma Aldrich 2010)	27
Figure 2.7 Chemical structure of gallocatechin gallate A non-naturally occurring	.57
green tea catechin (Adapted from GCG, Sigma-Aldrich 2010)	37
Figure 2.8 Chemical structure of enicatechin gallate A naturally occurring	. 51
catechin found in green tea (Adapted from ECG Sigma-Aldrich 2010)	37
Figure 3.1. The Central Coast region, outlined within the state of NSW. The Central	
Coast region is north of the capital city. Sydney, and south of the major	
city of Newcastle	.42
Figure 3.2. Location of the NSW Industries and Investment - Primary Industries,	
Narara (\clubsuit) and Somersby (\bigstar) sites and the University of Newcastle,	
Ourimbah campus (•)	.43
Figure 3.3. Row of green tea plants at NSW Industries and Investment - Primary	
Industries, Narara site. The image also shows the application of shade	
cloth directly on the plants	.44
Figure 3.4. NSW Industries and Investment - Primary Industries, Somersby site,	
showing the row setup of the green tea plants	.45
Figure 3.5. Image of a plant table divided into nine segments to ensure	10
representative sampling of the entire plant	.48
Figure 4.1. Labelled photograph of the morphological structures of leaf, trunk and	<i>c</i> 1
stem material of a green tea plant	.61
Figure 4.2. Labelled photograph of the morphological structure of the root material	67
Figure 4.2 Chromotogram showing the location of the standard targeted	.02
constituents (coffeine, ECCG and GCG) found in a green tea infusion	
produced using pure standard reagents	65
Figure AA Chromatogram showing the location of the standard targeted	.05
constituents (theanine FC FGC and FCG) found in a green tea infusion	
produced using pure standard reagents	65
Figure 4.5. Calibration curve for theanine	.66
Figure 4.6. Calibration curve for caffeine	.67
Figure 4.7. Calibration curve for EGC	.68
Figure 4.8. Calibration curve for EC	.69

Figure 4.9. Calibration curve for EGCG	70
Figure 4.10. Calibration curve for GCG	71
Figure 4.11. Calibration curve for ECG	72
Figure 4.12. Chromatogram of a green tea infusion with labelled target constituents	
(caffeine, EGCG and GCG)	73
Figure 4.13. Chromatogram of a green tea infusion with labelled target constituents	
(theanine, EC, EGC and ECG)	73
Figure 5.1. Relationship between total catechin concentration and the defined	
Quality Specification Values based upon market price sector	91
Figure 5.2. Relationship between theanine: total catechin ratio (concentration of	
theanine: total concentration of catechins) and the Quality Specification	
Values based upon market price sector	93
Figure 5.3. Relationship between theanine: caffeine ratio (concentration of	
theanine: concentration of caffeine) and the Quality Specification Value	
based upon market price sector	94
Figure 5.4. Relationship between EGCG: EGC ratio (concentration of EGCG:	
concentration of EGC) and the Quality Speciation value based upon	
market price sector	95
Figure 5.5. Relationship between EGCG: GCG ratio (concentration of EGCG:	
concentration of GCG) and the Quality Specification Value based upon	
market price sector	96
Figure 6.1. Content of target constituents of teas from the 'First Harvest' compared	
to the 'Second Harvest'	120
Figure 6.2. Quality Specification Values for the five Quality Indices and Quality	
Score from the 'First Harvest' as compared to the 'Second Harvest'	121
Figure 6.3. Correlation plot of the percentage converted Quality Scores determined	
using HPLC Quality Indices and percentage converted AF Scores	
determined using Near Infrared Analysis	126
Figure 7.1. Weather data recorded at the NSW Industries and Investment - Primary	1.40
Industries research site, October 2008 to May 2009.	143
Figure 7.2. Solar intensity data for the region of Somersby, NSW, June 2008 to	1 4 4
May 2009	144
Figure 7.3. Comparison of leaf relative chlorophyll content, as represented by	
Minolta SPAD units compared to solar intensity throughout the 32 weeks	110
of the study period	146
Figure 7.4. Relationship of solar intensity compared to leaf relative chlorophyll	1 477
Content	14/
Figure 7.5. Comparison of leaf relative chlorophyll content, as represented my	
Minolta SPAD content, compared to leaf EGCG content throughout the	155
52 weeks of the study period	100
Figure 7.6. Relationship of leaf EGCG content compared to leaf relative	150
chlorophyll content as represented by Minolta SPAD	130
Figure 7.7. Comparison of solar intensity compared to leaf EGCG content	1 6 7
Eigene 7.8. Deletionship of color interactive server at the fraction	15/
Figure 7.0. Total astaching contant of the leaves and stores for the 22 much stores.	128
rigure 7.9. Total calecrift content of the leaves and stems for the 32-week study	121
Figure 7.10. Theoring: total establish ratio within the largest and stores for the 22	101
Figure 7.10. Theanine: total catechin ratio within the leaves and stems for the 32-	160
week study period	102

Figure 7.11. Theanine: caffeine ratio within the leaves and stems for the 32-week	
study period	163
Figure 7.12. EGCG: EGC ratio within the leaves and stems for the 32-week study	
period.	164
Figure 7.13. EGCG: GCG ratio within the leaves and stems for the 32-week study	165
Eigune 7.14 Quality Score for the leaves and stores for the 22 week study period	105
and the periodicity of the 6-week Japanese harvesting method	167
Figure 7.15 Quality Score for the teas produced from the First Second and Third	107
Harvests	168
Figure 8.1. Mean monthly solar light intensity by season, comparing Australia to	
Japan.	.179
Figure 8.2. Photograph of three rows of C. sinensis var. sinensis plants, with a	
single layer of 90 per cent black shade cloth applied directly to the top	
and side surfaces	182
Figure 8.3. Somersby Primary Industries Site map showing the location of the	
plants used for trials at this site.	183
Figure 8.4. Narara Primary Industries Site map showing the location of the plants	104
used for the trial at this site.	184
Figure 8.5. Weather data for the Narara region of the NSW Central Coast,	100
September–December 2007	188
Figure 8.6. Comparison of the total catechin content of leaves grown under low	201
light intensities, compared to under full ambient sunlight intensities	204
Figure 8.7. Comparison of the total catechin content of stems grown under low light	205
intensities, compared to under full ambient sunlight intensities	205
Figure 8.8. Comparison of the theanine: total catechin ratio of leaves grown under	200
low light intensities, compared to under full ambient sunlight intensities	206
Figure 8.9. Comparison of the theanine: total catechin ratio of stems grown under	207
Iow light intensities, compared to under full ambient sunlight intensities	207
Figure 8.10. Comparison of the theanine: caffeine ratio of leaves grown under low	200
Fight intensities, compared to under full ambient sunlight intensities	208
Figure 8.11. Comparison of the theanine: caffeine ratio of stems grown under low	200
light intensities, compared to under full ambient sunlight intensities	209
Figure 8.12. Comparison of the EGCG: EGC ratio of leaves grown under low light	010
intensities, compared to under full ambient sunlight intensities	210
Figure 8.13. Comparison of the EGCG: EGC ratio of stems grown under low light	011
intensities, compared to under full ambient sunlight intensities	211
Figure 8.14. Comparison of the EGCG: GCG ratio of leaves grown under low light	010
intensities, compared to under full ambient sunlight intensities	212
Figure 8.15. Comparison of the EGCG: GCG ratio of stems grown under low light	010
intensities, compared to under full ambient sunlight intensities	213
Figure 9.1. Changes in concentration of the total catechins as a result of post-	220
harvest controlled temperature storage for up to 24 hours	230
Figure 9.2. Changes in theanine: total catechin ratio as a result of post-harvest	001
controlled temperature storage for up to 24 hours	231
Figure 9.3. Changes in theanine: catterine ratio as a result of post-harvest controlled	000
temperature storage for up to 24 hours	232
Figure 9.4. Changes in EGCG: EGC ratio as a result of post-harvest controlled	a c ·
temperature storage for up to 24 hours	234

Figure 9.5. Changes in EGCG: GCG ratio as a result of post-harvest controlled	
temperature storage for up to 24 hours	.235
Figure 9.6. Graphical representation of the concentrations of theanine, caffeine,	
EGC, EGCG and the total catechins in teas processed immediately after	
harvesting	.236
Figure 9.7. Graphical representation of the concentrations of theanine, caffeine,	
EGC, EGCG and the total catechin in teas processed after a post-harvest	
delay of 6 hours at 25°C	.237
Figure 9.8. Graphical representation of the concentrations of theanine, caffeine,	
EGC, EGCG and the total catechin in teas processed after a post-harvest	
delay of 12 hours at 25°C	.238
Figure 9.9. Graphical representation of the concentrations of theanine, caffeine,	
EGC, EGCG and the total catechin in teas processed after a post-harvest	
delay of 18 hours at 25°C	.239
Figure 9.10. Graphical representation of the concentrations of theanine, caffeine,	
EGC, EGCG and the total catechin in teas processed after a post-harvest	
delay of 24 hours at 25°C	.240

List of Tables

Table 2.1. Volume of tea imports for the 20 largest world importers of all tea types	22
III 2009	<i>LL</i>
Table 4.1. Variation of HPLC system as calibrated against Quanty Control Standarda	75
Table 4.2 Equations used for the quantification of theoning, coffeing and the	75
rable 4.2. Equations used for the quantification of theanine, carterine and the	80
Table 5.1 Identity of standard teas used to determine characteristics of low	00
medium- and high-quality teas within the Australian houtique green tea	
medium- and figh-quanty leas within the Australian bounque green lea	87
Table 5.2 Quality Indices and equations used to calculate values	
Table 5.3 Extract of the determination of bias to Quality Score caused by	00
combinations of the Quality Indices' relative Quality Specification	
Values	98
Table 5.4 The seven green tea quality categories based upon Quality Score	105
Table 5.5. Equations used to determine the Quality Specification Values for the five	, ,
Ouality Indices using the values for each of the specified constituents as	
measured by HPLC analysis	106
Table 6.1. Study number, year, harvest number, treatment identity and researchers	
involved with the treatment of the teas used for the comparison of	
Quality and NIR AF Scores	113
Table 6.2. Target constituents from 'First Harvest' teas from the Somersby and	
Narara Agricultural Research sites, 2004–2008	116
Table 6.3. Target constituents from 'Second Harvest' teas from the Somersby and	
Narara Agricultural Research sites, 2004–2008	117
Table 6.4. Quality indices from 'First Harvest' teas from Somersby and Narara	
Agricultural Research sites, 2004–2008	
Table 6.5. Quality indices from 'Second Harvest' teas from Somersby and Narara	
Agricultural Research sites, 2004–2008	119
Table 6.6. Comparison of the target constituents from Yabukita and Sayamakaori	
cultivars	123
Table 6.7. Comparison of the Quality Specification Values for the five Quality	
Indices and Quality Scores from Yabukita and Sayamakaori cultivars	124
Table 6.8. Quality determination of 'First Harvest' material from 2004–2005 and	
2007–08, and 'Second Harvest' material from 2006–2007, as determined	105
by the Quality Score, and compared to the NIR AF Score	125
Table 7.1. Target constituent content of the leaves from the first 16 weeks of the	1.40
study period	148
Table 7.2. Target constituent content of the leaves from the second 16 weeks	140
(weeks $1/-32$) of the study period	. 149
1 able /.s. Larget constituent content of the stems from the first 16 weeks of the	150
Table 7.4. Target constituent content of the store from the second 16 weeks (weeks)	
17, 22) of the study period	; 151
1 - 52) of the study period	

Table 8.1. Target constituents content from plants grown in low ambient light	
intensities with and without the red-coloured wavelengths, compared to	
full ambient conditions) 0
Table 8.2. Quality Indices and Quality Score from plants grown in low ambient	
light intensities with and without the red-coloured wavelengths,	
compared to full ambient light conditions) 1
Table 8.3. Target constituents content from plants grown under various decreased	
ambient light intensities, compared to under full ambient light conditions. 19) 3
Table 8.4. Quality Indices and Quality Score from plants grown under various	
decreased ambient light intensities, compared to under full ambient light	
conditions19) 4
Table 8.5. Target constituents content from leaves grown under decreased light	
intensity compared to full ambient sunlight conditions for an 11-week	
period19) 6
Table 8.6. Target constituents content from stems grown under decreased light	
intensity compared to full ambient sunlight conditions for an 11-week	
period19) 9
Table 9.1. Concentration of target constituents from green tea plant material stored	
at a controlled temperature storage facility for up to 24 hours post-	
harvest	29

List of Abbreviations

~	approximately
%	per cent
μg	microgram(s)
AF	auto focus
C.	Camellia
DI	deionised
EC	Epicatechin
ECG	Epicatechin Gallate
EGC	Epigallocatechin
EGCG	Epigallocatechin Gallate
GCG	Gallocatechin Gallate
HPLC	High-Performance Liquid Chromatography
IS	internal standard
MJ/m ²	mega joules of energy per square metre of surface area
mL	millilitre
mM	millimole per litre
NIR	Near Infrared
NSW	New South Wales
nm	nanometre(s)
PPO	polyphenol oxidase
QA	quality assurance
RIRDC	Rural Industries Research and Development Corporation
S	second(s)
UV	ultraviolet
Vis	visible

Synopsis

The green tea industry on the Central Coast of New South Wales (NSW) is an agricultural endeavour in the early stages of its establishment. It is a venture that, encouraged through public and private sector funding, has begun the propagation and production of Japanese styled green tea products for eventual export into the premium markets of Japan.

The working hypothesis for this project is that through a greater understanding of green tea production in the Australian conditions and environment and a deeper understanding of the relationship between green tea quality and its bioactive constituents, methods to improve Australian green tea could be developed. The resulting optimised products would be better suited to the heavy competition in the overseas markets of Asia, especially in Japan.

The main aim of the study was to develop a quality-assessment technique, the Quality Score, to highlight areas of strength and weakness within NSW Central Coast green tea products as they are currently produced, so that future developments can be planned for product optimisation. The concentrations of bioactive constituents in the products - that is, theanine, caffeine and the catechins: Epicatechin (EC), Epigallocatechin (EGC), Epigallocatechin gallate (EGCG), Gallocatechin gallate (GCG) and Epicatechin gallate (ECG) - were measured by High-Performance Liquid Chromatography (HPLC) and these values were related to the tea's corresponding retail-market quality categorisation.

The Quality Score testing procedure involved the development of five Quality Indices and their relationship to the levels of low, medium and high retail market quality. These Quality Indices were: the total catechin concentration, which showed the concentration was inversely related to retail quality; the theanine: total catechin ratio, which showed a positive correlation with increased retail quality; the theanine: caffeine ratio, which also showed a positive correlation with increased retail quality; the EGCG: EGC ratio, which again showed a positive correlation with increased retail market quality; and, finally, the EGCG: GCG ratio, which showed a negative correlation with increased market quality. These five Quality Indices were then combined to produce a Quality Score, which was used to categorise the green tea products in the study, according to similar products available in the Australian boutique green tea retail market.

All field studies were conducted at one of the two Gosford Primary Industries Institute tea research sites, at Somersby and Narara, NSW. The studies in the following chapters used, whenever appropriate, a treatment versus control study design. However, in the case of studies on environment factors, a time-based repeated measures study design was utilised. All collected samples of green tea were heat inactivated and dried immediately after harvesting or frozen immediately and heat inactivated and dried upon thawing to minimise oxidation of target bioactive constituents. All samples were brewed into green tea infusions and analysed for their content of theanine, caffeine and the catechins (EC, EGC, EGCG, GCG and ECG) using HPLC. Based on these quantitative analysis outcomes, the samples were subsequently scored for quality according to retail quality levels and categorised.

The Quality Score and Quality Indices were used to analyse historically produced green teas from the Central Coast region in an attempt to determine areas of product strength and weakness. This is reported in Chapter 6. The findings confirmed the importance traditionally placed upon green tea products; with the greatest market value assigned to 'First Harvest' and shaded or 'Gyokuro' green tea products. It was also concluded that a greater understanding of the environment and seasonal variations within the Central Coast region would contribute to product optimisation. Furthermore, it is argued that, as they also offer potential benefit, best practice agricultural techniques in regards to shading should be the focus of in-depth studies. Research into post-harvest processing also has potential for optimising NSW Central Coast green tea products.

Based on the findings of Chapter 6, green tea products were monitored across a complete harvesting season from September to May. This is reported in Chapter 7. Peak product quality was found to occur at 'First Harvest' and showed a slow natural decline throughout the remaining harvesting season. This decline was observed in both the leaves and stems, but the data showed that this decline was delayed slightly in the stems. This indicates that the inclusion of stems in teas from later harvests, particularly from the 'Second Harvest', could improve the quality of the resulting product. It was

found that the most abundant catechin in green tea infusions in the early part of the harvesting season was EGCG, but that towards the end of the growing season, after the seasonal peak in temperature, the most abundant catechin was EGC. Furthermore, it was revealed that the leaf concentration of EGCG is affected by solar intensity via a relationship with chlorophyll content and that this may contribute to a seasonal change in catechin concentration.

An investigation of the use of shading in the production of green tea showed that the Quality Score tool was able to distinguish between variations arising from the use of different shading techniques. The greatest improvement in Quality Score observed for short-term shading, up to 14 days, was when the available ambient light was reduced to one per cent. However, the most significant finding was the effect of long-term shading (up to 11 weeks) on the concentrations of theanine and caffeine within the stems of green tea plants that were shaded to 10 per cent ambient light levels for periods of seven to 11 weeks. These results indicate that utilisation of the stems is particularly important in the production of shaded green tea products after the 'First Harvest'.

Another important finding of this study was that the Quality Score was unable to measure the quality decline brought on by delays to the post-harvest polyphenol oxidase (PPO) enzymes inactivation. This was due to the teas developing characteristics of semi-fermented teas. Since the Quality Score was not calibrated to analyse semi-fermented teas, the tool was unable to provide an accurate measure of product quality. The use of raw concentration measures for the important target constituents including theanine, caffeine, EGCG, EGC and total catechins might prove more useful for future studies because they provided a better indication of fermentation.

The major conclusion from this study is that it is possible to use variations in the concentrations of target green tea bioactive constituents to quantify the green tea market quality objectively. It was also found that understanding the effect of growing and environmental conditions on the green tea crops, and tailoring farm practices to suit the production of particularly high quality and high value target green tea products, could improve the quality of the green tea being produced in the NSW Central Coast region and thereby improve its economic future.